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Abstract

We study second to fourth order numerical methods to a type of delta function integrals in one to three dimensions.
These delta function integrals arise from recent efficient level set methods for computing the multivalued solutions of non-
linear PDEs. We show that the natural quadrature approach with usual discrete delta functions and support size formulas
to the two dimensional delta function integrals suffer from nonconvergence. We then design high order numerical methods
to this type of delta function integrals based on interpolation approach. Numerical examples are presented to verify the
efficiency and accuracy of our methods.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study efficient numerical methods to the following type of delta function integrals

/Qa(x)f[a(ﬁ,.(x))dx, QCR xeR, (L1)

i=1

where d = 1, 2, 3 correspond to one to three dimensions, respectively. The values of the weight function a(x)
and the level set functions f;(x), 1 < i < d are provided at grid points of a uniform mesh. We assume the func-
tions a(x), f;(x),1 < i < d are smooth, and f;(x), 1 < i < d have finite number of common zero points in the
integral domain.
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Numerical computations of delta function integrals (1.1) appear in the recent area of efficient level set meth-
ods for computing the multivalued solutions in the semiclassical limit of the linear Schrédinger equation and
the high frequency limit of the linear wave equation [13,14]. As discussed in Section 2, this leads to the delta
function integrals of (1.1) type.

Compared with (1.1), a class of delta function integrals taking the following form has been much more
widely studied in the literature

| 1 WIVa s, =23 (12)

where u(x) is a level set function whose zero points consist a manifold of codimension one. The functions
f(x),u(x) are only defined at grid points of a uniform mesh. Numerical approximations to (1.2) widely appear
in the applications of level set methods [34,29,38,11,23,26,19,22,24,4]. To approximate (1.2) using the informa-
tion of f(x),u(x) at grid points, a thoroughly studied approach consists using discrete delta functions to com-
pose numerical quadrature. Namely one uses simple quadrature to approximate (1.2) with the delta function
in the integrand replaced by a discrete delta function which can be represented numerically. Among the var-
ious forms of the discrete delta functions, some simple choices of the discrete delta functions include
[2,35,31,32,8]
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where 2w is the support size of the discrete delta function. This approach is easy to implement and successful
in treating delta function integrals of (1.2) type. Up to second order methods based on quadrature approach
have been designed and implemented in the literature [30-32,3,8,27,33].

In comparison, the numerical methods to (1.1) have been much less investigated. Due to the success of the
quadrature approach in treating (1.2), it is then natural to extend the same idea to design numerical methods
to the delta function integrals (1.1). Namely one approximates (1.1) by a simple quadrature with delta func-
tions in the integrand replaced by discrete delta functions. Such a quadrature method has been used in [13,16]
to approximate (1.1). The advantage of this approach is easy to implement. High order numerical quadratures
in one dimension has been analyzed in [36]. However, we will show in this paper by counter examples that in
two dimension such an approach with usually used discrete delta functions including (1.3)—(1.5) and currently
available support size formulas suffer from nonconvergence. This implies that to successfully design quadra-
ture methods to (1.1) in high dimensions needs further investigation, and so far no convergent numerical
method to (1.1) in high dimensions has been available yet.

In this paper we investigate efficient numerical methods to (1.1) in one to three dimensions different from
the quadrature approach. Our idea is to directly interpolate the exact value of the delta function integrals (1.1)
from the values of the weight and level set functions at grid points. This idea is even more natural than the
quadrature approach. A possible disadvantage of this method one may argue is that one needs to determine
the existence of the common zero points of the level set functions in order to apply the interpolation. In com-
parison, such an issue is not encountered in the quadrature approach, where one just evaluates the values of
the discrete delta functions and then sum them up. As we will see in this paper, to check the common zero
points of the level set functions in high dimensions indeed is nontrivial. However, easy-to-implement rule
to check the common zero points can still be designed, as done in this paper. After the check of a common
zero point, a natural way to perform interpolation is to first approximate the common zero point position,
then interpolate the exact value of the delta function integral. However this approach needs solving nonlinear
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algebraic equations system if high order accuracy is expected. In this paper we adapt this natural way by
changing the interpolation space. Our approach does not need to explicitly determine the common zero points
positions and avoids solving nonlinear algebraic equations system in order to achieve high order accuracy. In
this paper we will study second to fourth order methods, respectively.

This paper is organized as follows. In Section 2, we describe the motivation of our study of the delta func-
tion integrals (1.1) in the level set methods. In Section 3, we give counter examples to show the nonconver-
gence of the quadrature approach with usual discrete delta functions and currently available support size
formulas to (1.1) in two dimension. In Section 4, we design efficient methods to (1.1) based on interpolation
approach in one to three dimensions gradually. In Section 5, we give numerical examples to verify the effi-
ciency and accuracy of our methods. We conclude the paper in Section 6.

2. Motivation in level set methods

As mentioned in the Introduction, our study of the numerical computations of the delta function integrals
(1.1) is motivated by the recent efficient level set methods for computing the multivalued solutions in the semi-
classical limit of the linear Schrodinger equation and the high frequency limit of the linear wave equation
[13,14], see also the related work [16-18]. Computation of multivalued solutions in nonlinear PDEs has been
a very active area of research, for example [1,5,9,6,7,15,21,37], to mention a few.

In the high frequency limit of WKB ansatz for Schrodinger or wave equation, one has to solve the Liouville
equation

fi+H, - Vyf —Hy-Vyf =0, t>0, x,veR’ (2.6)
with measure-valued initial data
F(%,v,0) = po(x)5(v — uo(x)), (2.7)

see for example [25,10,20], where f(¢,x,v) is the particle density function depending on position x, time ¢ and
the velocity or slowness vector v, H(x,v) is the Hamiltonian depending on specific problem. For semiclassical
limit of the linear Schrédinger equation H takes the form

H(x,v) = %|v|2 + V(x), (2.8)

where V(x) is the potential, v is the particle velocity, and for geometric optics limit of the linear wave equation

H(x,v) =c(x)|v] = c(x)\/v% +0i+... + 0%

where ¢(x) is the local wave speed, v is the slowness vector.

The solution of (2.6) and (2.7) at later time remains measure-valued (with finite or even infinite number of
concentrations-corresponding to multivalued solutions in the physical space). Numerical methods by directly
computing such measure-valued solutions could easily suffer from poor resolution due to the numerical
approximation of the initial data as well as numerical dissipation. The level set method proposed in [13,14]
obtains the equivalent form of f which is ¢]],d(i,), where ¢ and y, (i = 1,...,d) solve the same Liouville
Eq. (2.6) with initial data

d)(X, v, 0) = pO(X)a lpi(xvvv 0) =l — uiO(X)7 (29>
respectively. (The common zeroes of y; give the multivalued velocity or slowness vector, see [28,12,14])). Thus
the computation of measure-valued f can be decomposed into the computations of bounded valued level set

functions satisfying the same Liouville equation, which are much easier to compute with high accuracy. The
moments can be recovered through

p(x,1) :/f(x,v,t)dv:/qb(x,v,t)ﬂé(&pi)dv, (2.10)

u(x,t) :ﬁ/f(x,v, t)vdv:/d>(x,v, t)vgé(lﬁi)dv/p(x,t). (2.11)
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Thus to implement the above decomposition technique requires efficient numerical methods for evaluating
delta function integrals (2.10) and (2.11) provided the values of ¢, ; at grid points of a uniform mesh. These
integrals belong to the type (1.1). This gives motivation to our study in this paper.

3. Nonconvergence of numerical quadratures to the two dimensional delta function integrals

In this Section we show that in two dimension the numerical quadrature approach to the delta function
integrals (1.1), although simple to implement, suffers from nonconvergence when using usual discrete delta
functions and currently available support size formulas. Assume the integral domain is covered by a uniform
mesh (x;, ;) with mesh sizes Ax = Ay = h, and the values of the weight and level set functions are given at the
mesh points. We consider the following two dimensional numerical quadratures to (1.1) which have been used
n [13,16]

Z Z xl>y/ ﬁl(xhy])) »tffj(ﬁz(xi>yj))h2’ (312)

where 5W ,k = 1,2 are discrete delta functions such as (1.3)—-(1.5) and w are their support sizes.

A key'issue for using the numerical quadrature (3.12) is how to choose support sizes w L,k =1,2 properly
to ensure the convergence of the method. In [13,16] the following natural support size formulas are used

w1 —w = ||0¥/0(x, y)| (3.13)

X=X;.y=Y; |

and
wh; = wi = max ([0 /3(x, »)l,—y,m | Dy (3.14)

where ¥ = (f;, f5,), and the Jacobian is approximated by the central differences in computations. Another pos-
sible support size formula following the principle proposed in [8] takes the form

= (BB = (2] )
X=Xj V=Y

ox oy Ox dy
The derivatives in (3.15) again are approximated by central differences.
However, we will show in the following the numerical quadratures (3.12) using the discrete delta functions
Ok (x), 05 (x), 67 (x) in (1.3)~(1.5) with above support size formulas suffer from nonconvergence.
We consider the computation of the following delta function integral

\/2:>H—y \/iy—x
Lo ) (2w -

For this problem, the support size formulas (3.13) and (3.14) become w}j:wfj:h, and (3.15) is

w}i = wfj = fz—glh So we test a class of support size formulas w}i = wfj = yh,y € R*. We choose the mesh

(3.15)

X=XY=;

x; = ih,y; = jh,i,j € Z. Then the numerical quadrature (3.12) to the integral (3.16) is

2+, \/jj_xf 2
J= ZZ@,( y)a.,,h< {/§ )h. (3.17)

i€z jeZ

We assume the discrete delta function in (3.17) holds the property J,,(x) = 15x(%), which are true for & (x),

0¢(x), 6(x). Then the quadrature (3.17) becomes

V2i+j V2j—i
J(7) ZZ&( )(\/5) (3.18)

icZ jeZ

0

which is independent of /4. Thus the numerical quadrature (3.17) is convergent only if (3.18) gives the exact
value of the integral (3.16) which is 1. The support size formulas (3.13) and (3.14) correspond to y =1, and
(3.15) corresponds to y = ‘/5“ Thus we will test whether the quadrature (3.18) gives the value 1 under the
choices y = 1 ‘/%1
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Fig. 1 depicts the curve log,,(J(y) — 1) versus y in the range 1 < y < 100 computed numerically when
choosing the discrete delta function in (3.18) as &% (x). The results show that in such choice, J(y) > 1 for all
the tested y values including y = 1, jfl

As a comparison, Fig. 2 depicts the curve
sign(J(7) — Dlogy([V(v) = 1)) = V()
versus 7 in the range 1 < y < 10 computed numerically when choosing the discrete delta function in (3.18) as
S (x). Since the quantity J(y) is close to 1, logy,(l/(y) — 1|) < 0, thus ¥(y) > 0 when J(y) < 1 and ¥ (y) < 0
when J(y) > 1. The discontinuity points of ¥ (y) represents the positions where J(y) = 1. The results show that
in this situation, there are countable number of y values sorted in ascending order can ensure the quadrature
(3.18) being 1, but y = 1, Y241 oi]] lead to non-convergent solutions. Moreover, although numerical tests show
that when the discrete delta function 6 (x) is used, there generally exist support size choices ensuring the con-
vergence of the numerical quadrature (3.12), it is not clear yet how to express these support size conditions

log,o(J(¥)-1)

-7F W‘%‘Ffﬁ ﬁ% ”!5‘“ §
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Fig. 1. Curve log,;(J(y) — 1) computed numerically in the range 1 < 7 < 100, using the discrete delta function &% (x).
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Fig. 2. Curve sign(J(y) — 1)log;,(|/(y) — 1|) computed numerically in the range 1 < y < 10, using the discrete delta function 5S(x).
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explicitly by the derivatives of the level set functions as (3.13)—(3.15) do. Without an explicit support size for-
mula, the numerical quadrature (3.12) cannot be used in practical computations since one does not actually
know how to choose support sizes ensuring the convergence of the numerical method.

Using the discrete delta function 6" (x) in the numerical quadrature (3.18) gives similar phenomenon to
that using &% (x), which is that the numerical quadrature (3.18) does not give value 1 for all the tested y values

. . o \/E 1
including y = I,Tg.

4. Efficient numerical methods to the delta function integrals
4.1. One dimension

In one dimensional case the delta function integrals (1.1) take the form

/ #(x)8(B(x) i, (4.19)

where ff(x) may have finitely many zero points on the integral interval.

Instead of using discrete delta functions to compose numerical quadrature, another natural way to evaluate
the delta function integral is to use interpolation to directly approximate its exact value.

Assume the zero points of f(x) arex’,i=1,...,K, and ﬁ(l)(xi) £0,i=1,...,K, where pV is the derivative
of f. Then the exact value of (4.19) is

K a(x)
Y (4.20)
i=1 ’B (xc>|

A natural way to evaluate this value is as follows

Algorithm I”

e for each cell, check whether this cell contains a zero point of f(x).
e if it is true, then
— get an approximate zero point position, denoted by c¢*.
— use difference approximation to evaluate ") (x) at grid points, so that approximate grid points values of
o(x)
B @)l
— use interpolation to approximate

are available.
o(c*)
18D ()"

e add up the results of all the cells containing a zero point of f(x).

In the first step in Algorithm I*, one needs to check the existence of the zero point of the level set function.
This is trivial in one dimensional case. One just checks the signs of the level set function at two endpoints of
the cell. However this is not obvious in high dimensions. In the later parts of this paper we will discuss con-
venient strategy to determine the common zero points of the level set functions in high dimensions.

In the second step in Algorithm I*, one may approximate f(x) by a polynomial using interpolation, then
solve the root of this polynomial as the approximate zero point position ¢*. However, if high order accuracy
is required, namely the polynomial is high order, then one has to solve a nonlinear algebraic equation. In high
dimensions, in order to achieve high order accuracy, this approach even requires solving a system of nonlinear
algebraic equations. This is certainly inconvenient. In this paper we propose a technique to adapt Algorithm I*
so that it does not require determining the zero point position and solving the nonlinear algebraic equations
when achieving high order accuracy. We will extend our one dimensional algorithm to two and three dimen-
sional cases in the later parts of this paper.

Let x. be a zero point of f(x). Our idea is to interpolate

o(xe)
18D (xe)|

than in the integral variable space. Since " (x.) # 0, f(x) has the inverse function at the neighborhood of x,

denoted by x = y(f5). One has y(0) = x... Denote F(y) = ﬁ, where |ﬁg)(x)| denotes the difference approx-
p YW

in the level set function variable space rather
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imation to | (x )| Then F(0) =

Iﬁ ( ) . Assume x, is contained in a cell [x;, x;;], and denote §; = f(x;) for all
p \Ye

J. Then F(B;) =

Iﬂ ( — 1,i+2 and so on. {f;} typically consist a nonuniform mesh near 0.

Thus the problem becomes to 1nterpolate F(0) provided the values of F(y) at the grid points of a nonuniform
mesh around 0. From this viewpoint, one does not need to determine the zero point position x, in the integral
variable space, and avoids solving a nonlinear algebraic equation.

To interpolate F(0) from the values F(f;), we approximate the function F(y) by a polynomial p, + p;y + .
which has the same values as F(y) at grid points f§; for some j, then the coefficients p,, p;, . . . can be determlned
and p is the interpolation value to F(0). For example to achieve second order accuracy, one chooses the first
order polynomial p, 4 p,y which has the same values as F(y) at f;, f;,, then the coefficients satisfy the linear
algebraic equations

(A)C)-()

After solving this linear algebraic equations system, one obtains the interpolation value p,. Since f(x) is
reversible near the zero point, x; # x;;; implies f5; # f5;,, for a fine enough mesh. Thus the matrix in (4.21)
is of Vandermonde-type and nonsingular. This ensures that our approach is always implementable.

High order methods can be similarly designed. For example, to achieve fourth order accuracy, one solves a
fourth order linear algebraic equations system similar to (4.21).

One can also use Newton interpolation to approximate F(0). This approach does not need to solve linear
algebraic equations. But it is not extendible to high dimensional cases. The approach we used above via solv-
ing linear algebraic equations has the advantage that it can be systematically extended to high dimensional
cases. On the other hand, since the level set function only has finitely many zero points, the extra computa-
tional complexity of the operations in a cell containing a zero point is relatively insignificant. This consider-
ation is also proper in high dimensional cases, in which the level set functions only have finitely many common
Zero points.

In the last step in Algorithm I*, directly add up the results of all the cells containing a zero point of ff(x) can
cause problems in the situation that a zero point of f(x) is located at a grid point. For example, if (x;) = 0,
then the cells [x;_i,x;] and [x;,x;,;] both contain x;, and the approximation to ( >)‘ are added up twice. To
resolve this issue, we propose to introduce an indication function s(x) deﬁned at grid points. Initially we
set s(x;) = 0 for all j. If a cell [x;,x;+1] contains a zero point of f(x), and the result in the cell is added, then
we set s(x;) = s(x;+1) = 1. For any cell [x;,x;,1], we first check whether s(x;) = s(x;+1) = 0. If not, then the cell
is directly regarded as not containing a zero point of f(x) and no further operations are needed in this cell.
This approach uses the fact that any two zero points of f(x) have O(1) distance. So if a cell contains a zero
point of f(x), then its neighboring cells can not contain another zero point. By this approach we avoid adding
the result of the same zero point twice. The advantage of this approach is that it can be conveniently extended
to high dimensions.

After the above discussions, the algorithm we adapt from Algorithm I" is described as follows

Algorithm I

e set s(x;) = 0 for all grid points.
e for each cellx;, x;;1], check whether s(x;) = s(x;11) = 0.
— if it is true, check whether this cell contains a zero point of S(x).
* if it is true, then
use difference approximation to evaluate ,B(”(x) at grid points, so that approximate grid points
values of

/z“> ) are available. These values are used as right hand sides of the linear algebraic

equations of (4.21) type.
solve a linear algebraic equations system of (4.21) type according to the expected order accuracy,
and get the value of p,.
- oset s(x) =s(x) = 1.
e add up the values of p, of all the cells containing a zero point of f(x).
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In Algorithm I, to approximate " (x) at a grid point by the grid point values of f(x), we use a fourth order
difference formula as follows

1 1 2 2 1
B ~ o (—Eﬁm +3Bm =3B+ ﬁﬁiz), (422)

since we will study up to fourth order method in this paper. This formula will also be used in high dimensional
cases.

4.2. Two dimension

In two dimensional case the delta function integrals (1.1) take the form

/ / )3(B(x))dx, x € R (4.23)

Assume the common zero points of f(x,y) and f,(x,y) are (x,))),i=1,...,K, and [0O¥/0
(V) mit oy #0,i=1,...,K, where ¥ = (B, ,), [0O¥/0(x,y)| is the Jacobian. Then the exact value of
(4.23) is

o(x;, %)
Z ||6‘P/6

ety

Compared with one dimensional case, in two dimension an additional issue needs to be studied is how to
check the existence of a common zero point of the level set functions. As stated before, in one dimension to
check the existence of a zero point of the level set function is trivial. But this is not obvious in high
dimensions.

Let us consider a common zero point (x.y.) of the level set functions f,(x,y) and f,(x,y). Since
[0W/0(x,»)|,—y. =, # 0, themap I': (x,») — (B,(x,»), B>(x,»)) is one-to-one at the neighborhood of the com-
mon zero point. Assume the common zero point (x.,y,) is in or near a cell

Cij + i xin] X [y, vy (4.24)

in (x,y)-space, consider the set

Cy: {(p,q)|3(x,) € Cy,s.t.(p,q) = T(x,»)}. (4.25)
(4.25) typically is a set with curved boundary. To check that the cell C; contains a common zero point of
the level set functions is equivalent to check that the set C,, contains the point (0,0). However this is incon-
venient since C;; ; has curved boundary. This difficulty inspire us to consider the quadrilateral modified from C;; ;
which has flat boundary. Denote 8, ; = B (xx,¥;), Baxs = B2(xx, ;) for all k, [. Let the level set functions values

of the four vertexes of the cell Cy; be: Pi: (B, pBr), Pr: (ﬂl,i+l,jaﬁ2,i+1j)’ Py (Bt je1s Boisr )
Py : (Biyji1 Baijr1)- We consider the quadrilateral

E’,-j : the quadrilateral enclosed by the line segments P,P,, P,P3, P3Py, P4P. (4.26)

Since T is the linear map plus high order terms near the common zero point (x.,y.), E,j is approximately a
parallelogram and is convex for fine enough mesh. If the common zero point (x,,y.) is located in a cell Cy,
then for this cell and its neighboring cells, the corresponding C,; compose an irregular mesh covering the point
(0,0) for fine enough mesh. Thus our strategy is for each cell C;; to check whether the point (0,0) is contained
by the quadrilateral C,, rather than to check the set Cij. We w1ll use the indication function as adopted in one
dimensional case. Namely if a quadrilateral C,j is checked to contain a common zero point, then its neighbor-
ing quadrilaterals are directly regarded to not contain a common zero point. This avoids to add the result of
one common zero point more than once if the zero point is located at the boundary of Cj;.

One convenient way to check whether the point (0,0) is covered by a convex quadrilateral C;; is to compare

the position of (0, 0) towards the oriented line segments PPy, P,P3, P3Py, P4P;. If (0,0) is at the same side of
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the four oriented line segments, then it is enclosed by the four line segments, thus being covered by the quad-
rilateral. Algebraically, this can be checked by observing the following four determinants:

ﬂ]ﬁzﬂj ﬁl,i+1,j :Bl‘i,j+l ﬂ]ﬁi,j
BZJ.,‘/' ﬂ2,i+1,j ﬁz,i,j+1 ﬁzu

If these four determinants have the same sign, including some of them being zero, then the point (0,0) is cov-
ered by the quadrilateral C;;, otherwise not. R

If we have checked that the point (0, 0) is contained by a quadrilateral C;;, implying the zero point (x.,y,)
. First we choose a

7ﬁ1,i+1j ,81,1‘+1,j+1 ﬁ]ﬁi+l‘j+] ﬁ],z’ﬁl . (4.27>

) b

ﬁZ,i+Lj :82,1'4-1\/4-1 BZ,H—I,_H—I ﬁ2<i4j+1

being in or near the cell Cy;, then we can use interpolation to approximate W)\Q:}\
point among the four points (x;,y;), (Xit1,¥;)> (Xi+1,¥;11) (Xi;¥;41). From the viewpoint of numerical accuracy,
we choose the point denoted by (x;, y,) which has the minimum value of ﬁ%‘k,  + ﬁ;k_ ;- Then in the same spirit as
in the one dimensional case, we interpolate in the level set functions variables (f,, §,) space instead of in the

integral variables (x,y) space. Denote
o(x;, ¥ j)

BZEEs -

where 0¥, /0(x, y) is the difference approximation to the Jacobian matrix 0¥ /0(x, y), which can be achieved by

using the formula (4.22). Then to achieve second order accuracy, we can solve a third order linear algebraic
equations system, for example

G, = , forallij, (4.28)

L Bies B Po Gu
1 /))l,k+14[ ﬁz,k+1,1 P | =1 Gy |- (4-29)
1 ﬂl,kl+1 BZ,k,/H P> G141
To achieve third order accuracy, we can solve a sixth order linear algebraic equations system, for example
2 2
1 B B ljl,k,l fz,k,z BB 2 Gy
1 ﬁl,k+l,l [’,Z,k+l,l ﬁl4k+1,l ﬁz,k+1,1 ﬁl,k+1,lﬁ2,k+1,l D1 Gry1
2 2
L Brain Bakint Birin Bk B Bokin | Giiv1 (4.30)
2 2 - : :
1 /”1,/:—1,1 [),Z,k—l,[ ﬁljk—l,l ﬁz,k_u ﬁl,k—l,lﬁZ,k—l,l P Gi—1.1
2 2
L B Bk B i1 Basi-1 Brki-1Baki Pa G-y
1 2 2 Ds Gir1,041
Brasrisr Parviinr Pracin Poxsrier PrasrssiPrariin

To achieve fourth order accuracy, we solve a tenth order linear algebraic equations system which can be
constructed following the same principle as (4.29) and (4.30).
We can check that the matrixes in (4.29) and (4.30) are nonsingular for fine enough mesh. Denote

o, o, _ %, _ %,

Bl X 2,x ax |x:xa4y:yc’ 2y ay |x:x(uy:yc’

X ax X=X¢, Y=Y’ Ly — ay x=Xc,y=y.’
Denote the matrix in (4.29) to be M, then

L B —x) +Biy(v —y.)  Baxlu —x) + Bay(v; — ».)

|M1| =11 BI,X(ka _XC) JrBl,y(yl _yc) le(ka _XC) +BZ,y(yl _y(r) + H.O.,
1 BI,X(xk 7xc) JrBl«,y(VHl 7yc) B2~,X(xk 7x0) +B2y()’l+1 7yc)

where H.O. represents high order terms. So

1 Biox+Biyy,  Bauxp +Bayy, 1

|M1| =11 Bl’xxk+1 +Bljyy[ BZ,xkarl +B2,yyl + H.O. =1 Xie+1 Y 0 BLx Bz,x + H.O.
1 Bl,xxk + Bl,yy[+1 B2,xxk + BZ,yy/+1 1
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The first matrix in (4.31) can be regarded as the matrix in (x, y) space corresponding to M. Since the second
determinant in (4.31) is [0W/0(x, y)|1:x6w:yc #0, (4.31) implies that M, is nonsingular for fine enough mesh if
its corresponding matrix in (x,y) space is nonsingular. This is clearly valid, thus M is nonsingular for fine
enough mesh.

Denote the matrix in (4.30) to be M>, denote

B}/ = B1.x; +Bl,yyja B,ZJ = Byx;i + BZ,yyjy for all 7, /.

Then
L By By (Bi)’ (Bh)* By By
1 B/lﬂ,z BI%H,I (Bllc+1,1)2 (Biﬂ,z)z Bl{+l,1Bi+l,l
5| = 1 B,},Hl B,EJH (B;},H»l)z (BgH»l)z B,}JHBE,IH +H.O. = |31,]|B| + HO,,
1 By, B 1, (Bi_1.) (Bi_1,) B 1B
1 Bllc,l—l Bl%.,l—l (B 171)2 (Bi,l—l)z Bllc,llei,lfl
1 Bllc+1,l+l B§+1J+l (Bllc+1,l+1)2 (B§+IJ+1)2 Bll<+lﬁl+lBi+l,1+1
(4.32)
where
I X Vi (xk)2 ()’1)2 XV
oy )’ 007w
~ Loxe v (xk)2 (y,+1)2 XVt
|M,| = 5 ) , (4.33)
Loy ()™ ) xew
L xe vy (Xk)2 (yl—l)z XkYi-1
L X v (xk+l)2 O’m)z X+ 1141
I 0 0 0 0 0
0 By B 0 0 0
~ 0 By, B, 0 0 0
181= 0 0 0 (B (Bw) BB (4.34)
0 0 0 (Bl,y)2 (BZ,,V)Z ByyBay
0 0 0 2B B, 2By.B>, BiBr,+ BBy,

The matrix in (4.33) is the corresponding matrix to M, in (x,y) space. Since |§| in (4.34) equals
(|oW/0(x, y)\x:x(‘,y:yc)4 # 0, (4.32) again implies that M, is nonsingular for fine enough mesh if its correspond-
ing matrix in (x, y) space is nonsingular. One can check that M is nonsingular, thus M, is nonsingular for fine
enough mesh.

Similarly, one can check that for the tenth order matrix in achieving fourth order accuracy, it also
holds that the matrix is nonsingular for fine enough mesh if its corresponding matrix in (x,y) space is
nonsingular. To satisfy this, one can choose the ten indices in the matrix for example to be the eight indi-
ces among {(i,j)i=k—1,kk+1,j=1—-1,1,1+1} except (k—1,/—1), plus two indices
(k4+2,0),(k+2,1+2).

Thus we show that our second to fourth order accurate methods are all ensured to be implementable. After
solving the linear algebraic system, which is (4.29) for second order method, (4.30) for third order method, and
a tenth order system for fourth order method, the resulting p is the approximation to e )

. . . . : . [0¥/0(x.y)
After the above discussions, our two dimensional algorithm can be described as follows

P———
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Algorithm I1

o set s5; = 0 for all indices.
e for each cell Cj; : [x;,xi11] X [y}, ¥;,1], check whether s;; + 5;11; + 5i1401 + i1 = 0.
— ifit is true, check whether the quadrilateral C;; contains the point (0,0).
* 1f it is true, then

use difference approximation to evaluate the quantities (4.28) at grid points. These values are
used as right hand sides of the linear algebraic equations to be solved.
solve a linear algebraic equations system according to the expected order accuracy, and get the
value of py.
Set 8 = Siy1y = Siv1 4l = Sij1 = 1.

e add up the values of p, of all the quadrilaterals CU containing the point (0, 0).

4.3. Three dimension

In three dimensional case the delta function integrals (1.1) take the form

/ / / Jo(Ba(x)0(B (X)) dx, X € R, (4.35)

Assume the common zero points of f,(x,y,z), f,(x,y,z) and p;(x,y,z) are ( x,yiZ),i=1,...,K, and
0¥ /0(x,»,2)| g ymi s #0,i=1,..., K, where ¥ = (B, ,,B;), [0O¥/0(x,»,z)| is the Jacoblan. Then the
exact value of (4.35) is

Z C’yc7 (‘)
||alp/a x

Y,z ) |x:x§, Y=Y..z=2.

Denote B,;;, = B (xivypzk)a Baijk = ﬁz(xhijzk)a Byijx = .Bs(xhypzk) Pijx = (B i Baijges Ba, uk) for all
i, j, k. Let the level set functions values of the eight vertexes of the cell

Cip * i, xin] X [y, 901 X [z, 261 (4.36)
be: Py i Piji, Po i Piviji, P3 i Pivijitge, Pa i Pijig, Ps i Pijpets Po t Pivijis1, P7t Pipijiijrt> Ps t Pijeigsr. In the
same spirit as in the two dimensional case, we consider the dodecahedron

E’,«jk : the dodecahedron enclosed by the faces

P\PyPy, P1PsPy, P\P4Ps, PyPsPg, PyPsP3, PsPsPs,
P,P3Py, PyPgPy, PyPyPs, P3PsP7, P¢PsP7, P3P7Ps. (4.37)

If a common zero point (x.,,,z.) is located in a cell Cy, then for this cell and its neighboring cells, the

corresponding C,,k compose an irregular mesh covering the point (0,0,0) for fine enough mesh. To design

a convenient way to check a common zero point (x.,y,,z.), observe that the dodecahedron C,,k is covered
by the union of the following two hexahedrons

E‘}/k : the hexahedron enclosed by the planes
P1PyPy, P\PsPy, P\P4Ps, P3PcP7, P¢P3P7, P3P7 P, (4.38)

E‘f/k : the hexahedron enclosed by the planes
PyPsPs, PyPcPs3, PsPyPs, PyP3Py, P3PgPy, P4PyPs. (4.39)

For a cell near the zero point (x.,y,,z.), the two hexahedrons C! i and C2 7 are convex for fine enough mesh.
Moreover, C}]k U C2 T can only be slightly larger than CUk in the sense that for two dodecahedrons C,jk and
le 7« which are not adjacent, then their corresponding C}jk U C2 5 and C! TS o 27 also do not contact
for fine enough mesh. Therefore for a cell Cy it is more convenient to check the existence of the point

(0,0,0) in the set C! i U C,,k> for which we check the existence of the point (0,0,0) in the two hexahedrons
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, and Cl > respectively. To check whether the point (0,0,0) is covered by a convex hexahedron, we take the
s1m1lar strategy as for a convex quadrilateral in two dimensional case. We compare the position of (0,0, 0)
towards the oriented planes of the six faces of the hexahedron. If (0,0,0) is at the same side of the six oriented
planes, then it is enclosed by the six faces, thus being covered by the hexahedron. Algebraically, for C}ik this
can be checked by observing the following six determinants:

ﬁl,i.j,k ﬁl,iﬂ,j‘k ﬁlj,j+1.,k ﬁl,i.j,k ﬁl,i.j,kﬂ ﬁl‘i+1‘j,k

ﬁz‘i‘j,k ﬁli-%—l,j,k 182,1',‘1'4—1,/: ﬁzj,j,k ﬁzj.,j,kﬂ /’)2,i+1.,:k7

ﬁizﬁj,k ﬁS,H»l,j,k ﬁz,i,ﬂm /3341:,',/{ ﬁ34i4j,k+l ﬂ3,i+1,j,k

ﬁl,i.j,k ﬁl,i.jﬂ‘k ﬂl‘i,j‘kﬂ ﬁ],i+l,j+l‘,k ﬁl‘i+l.j‘k+l ﬁl,i+1‘j+l‘k+]

ﬁzi,j,k ﬁ24i,j+1,k ﬁz,i,j,k+1 ﬁ24i+l<j+l<k ﬁ2,i+1,j,k+l ﬁz,i+1,_/+1,k+1a (4.40)

/33,“,/( /334@#1,1{ 53,i,j,k+1 ﬁa,i+1,j+1,k /33,i+1j,k+1 ﬁ3,i+l,j+1,k+l
ﬁuﬂ,j,kﬂ 51,i,j+1.k+1 ﬁl,i+1,j+1.k+1 ﬁl,i+1¢j+1Ak ﬁl,i+1,j+l,k+1 ﬁl,i‘j+]7k+l

ﬁ24i+1.j,k+1 ﬁz,i,_/+1,k+1 ﬂz,i+1,_/'+1,k+l ) ﬁZ,i+1<j+1,k ﬁz,i+1,j+1,k+1 :[))2,i,j+14k+1~

B, it Ljk+1 Bs AL+ Bs A1+ Lk+1 Bs 1+ 1k Bs 1AL+ ﬁ3ij+l Je+1

If these six determinants have the same sign, including some of them being zero, then the point (0,0, 0) is cov-
ered by the hexahedron Cl/k, otherwise not. Similarly, to check the existence of the point (0,0, 0) in Cuk
compare the signs of the following six determinants:

Brivijx Prijusr Brsijwsr | [Brsigx Privijent Privijeix
Brivije  Brijurr  Brivijwnt s | Brivijw Privrjusr  Brivijer |
Briviju Paijurr Baisrjust | | Brivije Baivijusr  Baivijrix
Brijreer  Prijeveer  Privigeer | | Privige Brsijoe Brijeix
ﬁli,j,k-%—l ﬁ2,i,j+1.,k+1 ﬁli-f—l{j,k-%—l ) ﬁz,i+1,j,k ﬁZ,i+1,_/+l,k Baijiri s (4.41)
Brijurr Paijererr Paivrjuer | | Brivige Privrjnn PBaijrie
Brivijre Brijerarr Prijaia| | Brijoe Brijeienr Brijas

32?i+l.j+1<k ﬁZ,i,_/‘+1,k+l /32,1:/+1<k BZ.,:‘.,jH,k ﬁz,i,_i+14k+1 ﬁz,i,j,k+1~

Baivijin Paijriaenr Baijoiw| | Paijniw Baijrian ﬁsi,-k+1
By this way we can check the existence of the point (0,0,0) in C! i U C - We introduce the indication func-
tion as adopted in one and two dimensional cases. Namely if a cell Cj; whose corresponding C,Jk U Cl/k is
checked to contain the point (0,0,0), then we do not check its neighboring cells. Thus the result of one com-
mon zero point will not be added more than once.
If the point (0,0, 0) is checked to be contained in a Cjk U C?

near the cell Cyy, then we can use interpolation to approximate

implying the zero point (x,, y., z.) being in or

e,y 7e)
(R | R—

case, we first choose a point denoted by (x;,y,,,z,) among the eight points (x,.v, Vir2k)s (Xiv1, yj,.zk.), (Xit15 V15 25)5
(x,,y,+1,zk) (x,,yj,zkﬂ) (Xir1, V55 Zk01)s (Xiv1s V15 2001), (%6941, 2e11) which has the minimum value of
ﬁllmiz+ﬁ21mn+ﬂ3lmn Denote
xl7 '7Z
Hy = o Vi %)
10¥p/0(x, y,2)|
where 0W,/0(x,y,z) is the difference approximation to the Jacobian matrix 0¥ /0(x,y,z), which can be

achieved by using the formula (4.22). Then to achieve second order accuracy, we can solve a fourth order lin-
ear algebraic equations system, for example

ijk>
. As in the two dimensional

for all i,/ k, (4.42)

)
X=Xi,V=Y;Z=Z) |

1 ﬁl,l,m,n ﬁZ,l,nLn ﬂ3,l,m,n Do Hipp

1 ﬁl,l+l¢m,n ﬁZ,H»l,m,n ﬂ3,1+1AmAn P _ Hivmp . (4'43)
L Biimitn ﬁZ,l,mel‘n .Bs,l,m+1,n V%) H it

1 ﬁl,l,m,n+1 ﬁZ,Lm,n+l ﬂl/,m,n+l D3 Hy
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To achieve third and fourth order accuracy, we solve a tenth and a twentieth order linear algebraic equa-
tions system, respectively which can be constructed following the same principle as (4.43).

Similar to two dimensional case, we can check that the matrix in (4.43) is nonsingular for fine enough mesh.
Denote

o, 0B, 0B, |

px Ox | X=X¢,V=V.,2=Z¢ Py a_y |x:xc.,y:ywz:zc7 pz E X=X, Y=V F=2c )

B}y = B,.uxi + B,,y; + B,z for all i, j, k

for p=1,2,3.
Denote the matrix in (4.43) to be M3, then
1 B}mn B?mn B?mn 1 X Vi Zy 1 0 0 0
1 B B B’ 1 x z, 1|0 By, By, B,
|M3| _ i+1,mn ;+1 mn ;+1 7 L H.O. = I+ Vm 1, 2, 3 L H.O.
1 Blm+1n Blm+1n B/m+ln 1 X1 Ym+1 Zn 0 Bld’ Bza} B3y
1 Bllm | B%m S| B?m n+1 1 X1 Ym Znt1 0 Bl’z B2’Z B}z
(4.44)

The first matrix in (4.44) can be regarded as the matrix in (x,y,z) space corresponding to M3. The second
determinant in (4.44) is [0W/0(x, ,2)|,_,, ,, ... # 0. Similar to two dimensional case, we again have that M;
is nonsingular for fine enough mesh if its corresponding matrix in (x, y, z) space is nonsingular, which is clearly
valid. Thus M3 is nonsingular for fine enough mesh.

Similarly, one can check that for the tenth and the twentieth order matrixes in achieving third and fourth
order accuracy, the matrix is nonsingular for fine enough mesh if its corresponding matrix in (x, y,z) space is
nonsingular, respectively. To satisfy this, one can choose the ten indices in the tenth order matrix for example
to be (I +i,m+ j,n+k) for (i,, k) being

{(0,0,0),(1,0,0),(=1,0,0),(0,1,0), (0, -1,0),(0,0,1),(0,0,-1), (1, 1,0), (1,0,1), (0, 1, 1) }. (4.45)

The twenty indices in the twentieth order matrix can be chosen for example to be (I 4+ i,m + j,n+ k) for
(i, k) being

{(0,0,0),(1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1), (0,0, -1), (1, 1,0),(1,0,1),(0,1,1),(-1,-1,0),

(-1,0,-1),(0,—1,-1),(1,—1,0),(1,0,—1),(0,1,-1),(1,1,1),(2,0,0),(0,2,0),(0,0,2)}. (4.46)
Thus our second to fourth order accurate methods are all ensured to be implementable. After solving the
linear algebraic system, the resulting p, is the approximation to T /a(;‘;;‘y:‘): —

After the above discussions, our three dimensional algorithm can be described as follows

Algorithm III

o set s, = 0 for all indices.
o for each cell Cyy : [x;,x:41] X b’pJ’,H] X [zk, zks1), check whether s + Siv1 i + St ot x + Sijeth + Sijpr1+
Sitl g1l + St jri g1 + Sijripr1 = 0.
— if it is true, check whether the union of hexahedrons C1 U C2 x contains the point (0,0,0).
* if it is true, then
- use difference approximation to evaluate the quantities (4.42) at grid points. These values are
used as right hand sides of the linear algebraic equations to be solved.
solve a linear algebraic equations system according to the expected order accuracy, and get the
value of pg.

set Sijk = Sit1jk = Sitl Jtlk = Sig+lk = Sijk+1 = Sitljk+l = Sitlj+1h+1 = Sijtlh+l = =1L
e add up the values of py of all the C}, U 2 "« containing the point (0,0,0).
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5. Numerical examples

In this Section we give numerical examples in one to three dimensions respectively to show the efficiency
and accuracy of our methods proposed in this paper.

Example 5.1 Consider the numerical computation of the one dimensional delta function integral (4.19). We
choose a(x) = log(x +e), f(x) = ¢¥> — 1. We test a number of mesh sizes. For each mesh size, we select 100
uniform meshes via random shifts. We show the largest relative numerical errors of our methods among using
these 100 meshes for each mesh size.

Table 5.1 lists the results of our second to fourth order methods. The last column in the Table presents the
estimated convergence rates. These results clearly show that our numerical methods achieve the expected
numerical accuracy.

Example 5.2 Consider the numerical computation of the two dimensional delta function integral (4.23). We
choose a(x,y) = cos(x + y), B (x,y) = e — 1, B,(x,y) = e — 1. We test a number of mesh sizes. For each
mesh size, we select 100 uniform meshes via random shifts in two axis directions. We show the largest relative
numerical errors of our methods among using these 100 meshes for each mesh size.

Table 5.2 lists the results of our second to fourth order methods. The last column in the Table presents the
estimated convergence rates. These results show that our numerical methods achieve the expected numerical
accuracy.

Example 5.3 Consider the numerical computation of the three dimensional delta function integral (4.35). We
choose oc(x,y,z) = COS(X +y+z), ﬁl (X,y,Z) = e‘/_?¥+7§);+ﬁz -1, ﬁz(xayaz) = eﬁx+ﬁz - la ﬂ}(xayvz) = e%x+%y+%z — 1
We test a number of mesh sizes. For each mesh size, we select 50 uniform meshes via random shifts in three
axis directions. We show the largest relative numerical errors of our methods among using these 50 meshes for
each mesh size.

Table 5.3 lists the results of our second to fourth order methods. The last column in the Table presents the
estimated convergence rates. These results show that our numerical methods achieve the expected numerical
accuracy.

Table 5.1

Example 5.1, relative errors of the one dimensional methods

Mesh size 0.1 0.05 0.025 0.0125 0.00625 R.
Second order method 3.21E-3 8.27E—4 2.08E—4 5.19E-5 1.29E-5 1.99
Third order method 5.06E—4 6.22E—5 7.72E—6 9.60E—7 1.20E-7 3.01
Fourth order method 6.34E—5 3.99E-6 2.50E—7 1.56E—8 9.76E—10 4.00
Table 5.2

Example 5.2, relative errors of the two dimensional methods

Mesh size 0.1 0.05 0.025 0.0125 0.00625 R
Second order method 1.00E—1 3.0l1E-2 6.96E—3 2.16E-3 5.80E—4 1.87
Third order method 1.51E-1 1.75E-2 2.18E-3 2.54E—4 3.47E-5 3.03
Fourth order method 4.04E—1 6.02E—3 4.96E—4 2.52E-5 1.16E—6 4.47
Table 5.3

Example 5.3, relative errors of the three dimensional methods

Mesh size 0.1 0.05 0.025 0.0125 0.00625 R.
Second order method 8.03E-3 2.36E—3 6.21E—4 1.48E—4 3.43E-5 1.97
Third order method S5.13E-3 6.18E—4 1.00E—4 1.24E-5 1.56E—6 2.90

Fourth order method 4.11E—4 3.24E-5 2.46E—6 1.26E—7 3.95E-9 4.13
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6. Conclusion

In this paper we studied high order numerical methods to a type of delta function integrals in one to three
dimensions. Such delta function integrals arise from recent efficient level set methods for computing the mul-
tivalued solutions in the semiclassical limit of the linear Schrodinger equation and the high frequency limit of
the linear wave equation [13,14].

We show that the numerical quadratures to the two dimensional delta function integrals, which are
designed based on very natural idea, suffer from nonconvergence with usual discrete delta functions and sup-
port size formulas. We then proceed to design efficient numerical methods to the delta function integrals in one
to three dimensions based on interpolation approach. In such an approach, one needs to check the existence of
the common zero points of the level set functions, which is avoided in the quadrature approach. Such an issue
indeed is nontrivial in high dimensions. In this paper we give convenient strategy to check the common zero
points of the level set functions. After the check of a common zero point, the usual way to perform interpo-
lation needs to approximate the common zero point position, which requires solving nonlinear algebraic equa-
tions system if high order accuracy is expected. We adapt the usual way by changing the interpolation space.
Our approach does not need to explicitly determine the common zero points positions and avoids solving non-
linear algebraic equations system in order to achieve high order accuracy. In this paper we have designed sec-
ond to fourth order methods. Numerical examples are presented which verify that our methods proposed in
this paper are efficient and achieve the expected accuracy.
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