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Abstract

We study second to fourth order numerical methods to a type of delta function integrals in one to three dimensions.
These delta function integrals arise from recent efficient level set methods for computing the multivalued solutions of non-
linear PDEs. We show that the natural quadrature approach with usual discrete delta functions and support size formulas
to the two dimensional delta function integrals suffer from nonconvergence. We then design high order numerical methods
to this type of delta function integrals based on interpolation approach. Numerical examples are presented to verify the
efficiency and accuracy of our methods.
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1. Introduction

In this paper we study efficient numerical methods to the following type of delta function integrals
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where d ¼ 1; 2; 3 correspond to one to three dimensions, respectively. The values of the weight function aðxÞ
and the level set functions biðxÞ; 1 6 i 6 d are provided at grid points of a uniform mesh. We assume the func-
tions aðxÞ; biðxÞ; 1 6 i 6 d are smooth, and biðxÞ; 1 6 i 6 d have finite number of common zero points in the
integral domain.
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Numerical computations of delta function integrals (1.1) appear in the recent area of efficient level set meth-
ods for computing the multivalued solutions in the semiclassical limit of the linear Schrödinger equation and
the high frequency limit of the linear wave equation [13,14]. As discussed in Section 2, this leads to the delta
function integrals of (1.1) type.

Compared with (1.1), a class of delta function integrals taking the following form has been much more
widely studied in the literature
Z

Rn
f ðxÞkruðxÞkdðuðxÞÞdx; n ¼ 2; 3; ð1:2Þ
where uðxÞ is a level set function whose zero points consist a manifold of codimension one. The functions
f ðxÞ; uðxÞ are only defined at grid points of a uniform mesh. Numerical approximations to (1.2) widely appear
in the applications of level set methods [34,29,38,11,23,26,19,22,24,4]. To approximate (1.2) using the informa-
tion of f ðxÞ; uðxÞ at grid points, a thoroughly studied approach consists using discrete delta functions to com-
pose numerical quadrature. Namely one uses simple quadrature to approximate (1.2) with the delta function
in the integrand replaced by a discrete delta function which can be represented numerically. Among the var-
ious forms of the discrete delta functions, some simple choices of the discrete delta functions include
[2,35,31,32,8]
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where 2w is the support size of the discrete delta function. This approach is easy to implement and successful
in treating delta function integrals of (1.2) type. Up to second order methods based on quadrature approach
have been designed and implemented in the literature [30–32,3,8,27,33].

In comparison, the numerical methods to (1.1) have been much less investigated. Due to the success of the
quadrature approach in treating (1.2), it is then natural to extend the same idea to design numerical methods
to the delta function integrals (1.1). Namely one approximates (1.1) by a simple quadrature with delta func-
tions in the integrand replaced by discrete delta functions. Such a quadrature method has been used in [13,16]
to approximate (1.1). The advantage of this approach is easy to implement. High order numerical quadratures
in one dimension has been analyzed in [36]. However, we will show in this paper by counter examples that in
two dimension such an approach with usually used discrete delta functions including (1.3)–(1.5) and currently
available support size formulas suffer from nonconvergence. This implies that to successfully design quadra-
ture methods to (1.1) in high dimensions needs further investigation, and so far no convergent numerical
method to (1.1) in high dimensions has been available yet.

In this paper we investigate efficient numerical methods to (1.1) in one to three dimensions different from
the quadrature approach. Our idea is to directly interpolate the exact value of the delta function integrals (1.1)
from the values of the weight and level set functions at grid points. This idea is even more natural than the
quadrature approach. A possible disadvantage of this method one may argue is that one needs to determine
the existence of the common zero points of the level set functions in order to apply the interpolation. In com-
parison, such an issue is not encountered in the quadrature approach, where one just evaluates the values of
the discrete delta functions and then sum them up. As we will see in this paper, to check the common zero
points of the level set functions in high dimensions indeed is nontrivial. However, easy-to-implement rule
to check the common zero points can still be designed, as done in this paper. After the check of a common
zero point, a natural way to perform interpolation is to first approximate the common zero point position,
then interpolate the exact value of the delta function integral. However this approach needs solving nonlinear
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algebraic equations system if high order accuracy is expected. In this paper we adapt this natural way by
changing the interpolation space. Our approach does not need to explicitly determine the common zero points
positions and avoids solving nonlinear algebraic equations system in order to achieve high order accuracy. In
this paper we will study second to fourth order methods, respectively.

This paper is organized as follows. In Section 2, we describe the motivation of our study of the delta func-
tion integrals (1.1) in the level set methods. In Section 3, we give counter examples to show the nonconver-
gence of the quadrature approach with usual discrete delta functions and currently available support size
formulas to (1.1) in two dimension. In Section 4, we design efficient methods to (1.1) based on interpolation
approach in one to three dimensions gradually. In Section 5, we give numerical examples to verify the effi-
ciency and accuracy of our methods. We conclude the paper in Section 6.

2. Motivation in level set methods

As mentioned in the Introduction, our study of the numerical computations of the delta function integrals
(1.1) is motivated by the recent efficient level set methods for computing the multivalued solutions in the semi-
classical limit of the linear Schrödinger equation and the high frequency limit of the linear wave equation
[13,14], see also the related work [16–18]. Computation of multivalued solutions in nonlinear PDEs has been
a very active area of research, for example [1,5,9,6,7,15,21,37], to mention a few.

In the high frequency limit of WKB ansatz for Schrödinger or wave equation, one has to solve the Liouville
equation
ft þ H v � rxf � Hx � rvf ¼ 0; t > 0; x; v 2 Rd ; ð2:6Þ

with measure-valued initial data
f ðx; v; 0Þ ¼ q0ðxÞdðv� u0ðxÞÞ; ð2:7Þ

see for example [25,10,20], where f ðt; x; vÞ is the particle density function depending on position x, time t and
the velocity or slowness vector v, Hðx; vÞ is the Hamiltonian depending on specific problem. For semiclassical
limit of the linear Schrödinger equation H takes the form
Hðx; vÞ ¼ 1

2
jvj2 þ V ðxÞ; ð2:8Þ
where V(x) is the potential, v is the particle velocity, and for geometric optics limit of the linear wave equation
Hðx; vÞ ¼ cðxÞjvj ¼ cðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2 þ . . .þ v2

d

q
;

where cðxÞ is the local wave speed, v is the slowness vector.
The solution of (2.6) and (2.7) at later time remains measure-valued (with finite or even infinite number of

concentrations-corresponding to multivalued solutions in the physical space). Numerical methods by directly
computing such measure-valued solutions could easily suffer from poor resolution due to the numerical
approximation of the initial data as well as numerical dissipation. The level set method proposed in [13,14]
obtains the equivalent form of f which is /

Qd
i¼1dðwiÞ, where / and wi ði ¼ 1; . . . ; dÞ solve the same Liouville

Eq. (2.6) with initial data
/ðx; v; 0Þ ¼ q0ðxÞ; wiðx; v; 0Þ ¼ vi � ui0ðxÞ; ð2:9Þ

respectively. (The common zeroes of wi give the multivalued velocity or slowness vector, see [28,12,14])). Thus
the computation of measure-valued f can be decomposed into the computations of bounded valued level set
functions satisfying the same Liouville equation, which are much easier to compute with high accuracy. The
moments can be recovered through
qðx; tÞ ¼
Z

f ðx; v; tÞdv ¼
Z

/ðx; v; tÞ
Yd

i¼1

dðwiÞdv; ð2:10Þ

uðx; tÞ ¼ 1

qðx; tÞ

Z
f ðx; v; tÞvdv ¼

Z
/ðx; v; tÞv

Yd

i¼1

dðwiÞdv=qðx; tÞ: ð2:11Þ
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Thus to implement the above decomposition technique requires efficient numerical methods for evaluating
delta function integrals (2.10) and (2.11) provided the values of /;wi at grid points of a uniform mesh. These
integrals belong to the type (1.1). This gives motivation to our study in this paper.

3. Nonconvergence of numerical quadratures to the two dimensional delta function integrals

In this Section we show that in two dimension the numerical quadrature approach to the delta function
integrals (1.1), although simple to implement, suffers from nonconvergence when using usual discrete delta
functions and currently available support size formulas. Assume the integral domain is covered by a uniform
mesh ðxi; yjÞ with mesh sizes Dx ¼ Dy ¼ h, and the values of the weight and level set functions are given at the
mesh points. We consider the following two dimensional numerical quadratures to (1.1) which have been used
in [13,16]
X

i

X
j

aðxi; yjÞdw1
ij
ðb1ðxi; yjÞÞdw2

ij
ðb2ðxi; yjÞÞh2; ð3:12Þ
where dwk
ij
; k ¼ 1; 2 are discrete delta functions such as (1.3)–(1.5) and wk

ij are their support sizes.
A key issue for using the numerical quadrature (3.12) is how to choose support sizes wk

i;j; k ¼ 1; 2 properly
to ensure the convergence of the method. In [13,16] the following natural support size formulas are used
w1
ij ¼ w2

ij ¼ koW=oðx; yÞjx¼xi ;y¼yj
jh ð3:13Þ
and
w1
ij ¼ w2

ij ¼ maxðkoW=oðx; yÞjx¼xi ;y¼yj
j; 1Þh; ð3:14Þ
where W ¼ ðb1; b2Þ, and the Jacobian is approximated by the central differences in computations. Another pos-
sible support size formula following the principle proposed in [8] takes the form
w1
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The derivatives in (3.15) again are approximated by central differences.
However, we will show in the following the numerical quadratures (3.12) using the discrete delta functions

dL
wðxÞ; dC

wðxÞ; dPC
w ðxÞ in (1.3)–(1.5) with above support size formulas suffer from nonconvergence.

We consider the computation of the following delta function integral
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For this problem, the support size formulas (3.13) and (3.14) become w1
ij ¼ w2

ij ¼ h, and (3.15) is

w1
ij ¼ w2
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xi ¼ ih; yj ¼ jh; i; j 2 Z. Then the numerical quadrature (3.12) to the integral (3.16) is
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We assume the discrete delta function in (3.17) holds the property dwðxÞ ¼ 1
h dw

h
ðxhÞ, which are true for dL

wðxÞ;
dC

wðxÞ; dPC
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; ð3:18Þ
which is independent of h. Thus the numerical quadrature (3.17) is convergent only if (3.18) gives the exact
value of the integral (3.16) which is 1. The support size formulas (3.13) and (3.14) correspond to c = 1, and
(3.15) corresponds to c ¼

ffiffi
2
p
þ1ffiffi
3
p . Thus we will test whether the quadrature (3.18) gives the value 1 under the

choices c ¼ 1;
ffiffi
2
p
þ1ffiffi
3
p .
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Fig. 1 depicts the curve log10ðJðcÞ � 1Þ versus c in the range 1 6 c 6 100 computed numerically when
choosing the discrete delta function in (3.18) as dL

wðxÞ. The results show that in such choice, JðcÞ > 1 for all
the tested c values including c ¼ 1;

ffiffi
2
p
þ1ffiffi
3
p .

As a comparison, Fig. 2 depicts the curve
Fig.
signðJðcÞ � 1Þlog10ðjJðcÞ � 1jÞ � V ðcÞ

versus c in the range 1 6 c 6 10 computed numerically when choosing the discrete delta function in (3.18) as
dC

wðxÞ. Since the quantity JðcÞ is close to 1, log10ðjJðcÞ � 1jÞ < 0, thus V ðcÞ > 0 when JðcÞ < 1 and V ðcÞ < 0
when JðcÞ > 1. The discontinuity points of V ðcÞ represents the positions where JðcÞ ¼ 1. The results show that
in this situation, there are countable number of c values sorted in ascending order can ensure the quadrature
(3.18) being 1, but c ¼ 1;

ffiffi
2
p
þ1ffiffi
3
p still lead to non-convergent solutions. Moreover, although numerical tests show

that when the discrete delta function dC
wðxÞ is used, there generally exist support size choices ensuring the con-

vergence of the numerical quadrature (3.12), it is not clear yet how to express these support size conditions
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Fig. 1. Curve log10ðJðcÞ � 1Þ computed numerically in the range 1 6 c 6 100, using the discrete delta function dL
wðxÞ.
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2. Curve signðJðcÞ � 1Þlog10ðjJðcÞ � 1jÞ computed numerically in the range 1 6 c 6 10, using the discrete delta function dC
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explicitly by the derivatives of the level set functions as (3.13)–(3.15) do. Without an explicit support size for-
mula, the numerical quadrature (3.12) cannot be used in practical computations since one does not actually
know how to choose support sizes ensuring the convergence of the numerical method.

Using the discrete delta function dPC
w ðxÞ in the numerical quadrature (3.18) gives similar phenomenon to

that using dL
wðxÞ, which is that the numerical quadrature (3.18) does not give value 1 for all the tested c values

including c ¼ 1;
ffiffi
2
p
þ1ffiffi
3
p .

4. Efficient numerical methods to the delta function integrals

4.1. One dimension

In one dimensional case the delta function integrals (1.1) take the form
Z b

a
aðxÞdðbðxÞÞdx; ð4:19Þ
where bðxÞ may have finitely many zero points on the integral interval.
Instead of using discrete delta functions to compose numerical quadrature, another natural way to evaluate

the delta function integral is to use interpolation to directly approximate its exact value.
Assume the zero points of bðxÞ are xi

c; i ¼ 1; . . . ;K, and bð1Þðxi
cÞ 6¼ 0; i ¼ 1; . . . ;K, where b(1) is the derivative

of b. Then the exact value of (4.19) is
XK

i¼1

aðxi
cÞ

bð1Þðxi
cÞ

�� �� : ð4:20Þ
A natural way to evaluate this value is as follows

Algorithm I*

� for each cell, check whether this cell contains a zero point of bðxÞ.
� if it is true, then

– get an approximate zero point position, denoted by c*.
– use difference approximation to evaluate bð1ÞðxÞ at grid points, so that approximate grid points values of

aðxÞ
jbð1ÞðxÞj are available.

– use interpolation to approximate aðc�Þ
jbð1Þðc�Þj.

� add up the results of all the cells containing a zero point of bðxÞ.

In the first step in Algorithm I*, one needs to check the existence of the zero point of the level set function.
This is trivial in one dimensional case. One just checks the signs of the level set function at two endpoints of
the cell. However this is not obvious in high dimensions. In the later parts of this paper we will discuss con-
venient strategy to determine the common zero points of the level set functions in high dimensions.

In the second step in Algorithm I*, one may approximate bðxÞ by a polynomial using interpolation, then
solve the root of this polynomial as the approximate zero point position c*. However, if high order accuracy
is required, namely the polynomial is high order, then one has to solve a nonlinear algebraic equation. In high
dimensions, in order to achieve high order accuracy, this approach even requires solving a system of nonlinear
algebraic equations. This is certainly inconvenient. In this paper we propose a technique to adapt Algorithm I*

so that it does not require determining the zero point position and solving the nonlinear algebraic equations
when achieving high order accuracy. We will extend our one dimensional algorithm to two and three dimen-
sional cases in the later parts of this paper.

Let xc be a zero point of bðxÞ. Our idea is to interpolate aðxcÞ
jbð1ÞðxcÞj

in the level set function variable space rather

than in the integral variable space. Since bð1ÞðxcÞ 6¼ 0, bðxÞ has the inverse function at the neighborhood of xc,

denoted by x ¼ cðbÞ. One has cð0Þ ¼ xc. Denote F ðyÞ ¼ aðcðyÞÞ
jbð1ÞD ðcðyÞÞj

, where jbð1ÞD ðxÞj denotes the difference approx-
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imation to jbð1ÞðxÞj. Then F ð0Þ ¼ aðxcÞ
jbð1ÞD ðxcÞj

. Assume xc is contained in a cell ½xi; xiþ1�, and denote bj ¼ bðxjÞ for all

j. Then F ðbjÞ ¼
aðxjÞ
jbð1ÞD ðxjÞj

, for j ¼ i; iþ 1; i� 1; iþ 2 and so on. fbjg typically consist a nonuniform mesh near 0.

Thus the problem becomes to interpolate F(0) provided the values of F(y) at the grid points of a nonuniform
mesh around 0. From this viewpoint, one does not need to determine the zero point position xc in the integral
variable space, and avoids solving a nonlinear algebraic equation.

To interpolate F(0) from the values F ðbjÞ, we approximate the function F(y) by a polynomial p0 þ p1y þ . . .
which has the same values as F(y) at grid points bj for some j, then the coefficients p0; p1; . . . can be determined,
and p0 is the interpolation value to F(0). For example, to achieve second order accuracy, one chooses the first
order polynomial p0 þ p1y which has the same values as F(y) at bi; biþ1, then the coefficients satisfy the linear
algebraic equations
1 bi

1 biþ1

� 	
p0

p1

� 	
¼

F ðbiÞ
F ðbiþ1Þ

� 	
: ð4:21Þ
After solving this linear algebraic equations system, one obtains the interpolation value p0. Since bðxÞ is
reversible near the zero point, xi 6¼ xiþ1 implies bi 6¼ biþ1 for a fine enough mesh. Thus the matrix in (4.21)
is of Vandermonde-type and nonsingular. This ensures that our approach is always implementable.

High order methods can be similarly designed. For example, to achieve fourth order accuracy, one solves a
fourth order linear algebraic equations system similar to (4.21).

One can also use Newton interpolation to approximate F(0). This approach does not need to solve linear
algebraic equations. But it is not extendible to high dimensional cases. The approach we used above via solv-
ing linear algebraic equations has the advantage that it can be systematically extended to high dimensional
cases. On the other hand, since the level set function only has finitely many zero points, the extra computa-
tional complexity of the operations in a cell containing a zero point is relatively insignificant. This consider-
ation is also proper in high dimensional cases, in which the level set functions only have finitely many common
zero points.

In the last step in Algorithm I*, directly add up the results of all the cells containing a zero point of bðxÞ can
cause problems in the situation that a zero point of bðxÞ is located at a grid point. For example, if bðxiÞ ¼ 0,
then the cells ½xi�1; xi� and ½xi; xiþ1� both contain xi, and the approximation to aðxiÞ

jbð1ÞðxiÞj
are added up twice. To

resolve this issue, we propose to introduce an indication function s(x) defined at grid points. Initially we
set sðxjÞ ¼ 0 for all j. If a cell ½xi; xiþ1� contains a zero point of bðxÞ, and the result in the cell is added, then
we set sðxiÞ ¼ sðxiþ1Þ ¼ 1. For any cell ½xj; xjþ1�, we first check whether sðxjÞ ¼ sðxjþ1Þ ¼ 0. If not, then the cell
is directly regarded as not containing a zero point of bðxÞ and no further operations are needed in this cell.
This approach uses the fact that any two zero points of bðxÞ have O(1) distance. So if a cell contains a zero
point of bðxÞ, then its neighboring cells can not contain another zero point. By this approach we avoid adding
the result of the same zero point twice. The advantage of this approach is that it can be conveniently extended
to high dimensions.

After the above discussions, the algorithm we adapt from Algorithm I* is described as follows

Algorithm I

� set sðxjÞ ¼ 0 for all grid points.
� for each cell½xi; xiþ1�, check whether sðxiÞ ¼ sðxiþ1Þ ¼ 0.

– if it is true, check whether this cell contains a zero point of bðxÞ.

* if it is true, then
Æ use difference approximation to evaluate bð1ÞðxÞ at grid points, so that approximate grid points

values of aðxÞ
jbð1ÞðxÞj are available. These values are used as right hand sides of the linear algebraic

equations of (4.21) type.
Æ solve a linear algebraic equations system of (4.21) type according to the expected order accuracy,

and get the value of p0.
Æ set sðxiÞ ¼ sðxiþ1Þ ¼ 1.
� add up the values of p0 of all the cells containing a zero point of bðxÞ.
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In Algorithm I, to approximate bð1ÞðxÞ at a grid point by the grid point values of bðxÞ, we use a fourth order
difference formula as follows
bð1ÞðxiÞ 	
1

h
� 1

12
biþ2 þ

2

3
biþ1 �

2

3
bi�1 þ

1

12
bi�2

� 	
; ð4:22Þ
since we will study up to fourth order method in this paper. This formula will also be used in high dimensional
cases.

4.2. Two dimension

In two dimensional case the delta function integrals (1.1) take the form
Z b

a

Z d

c
aðxÞdðb1ðxÞÞdðb2ðxÞÞdx; x 2 R2: ð4:23Þ
Assume the common zero points of b1ðx; yÞ and b2ðx; yÞ are ðxi
c; y

i
cÞ; i ¼ 1; . . . ;K, and joW=o

ðx; yÞjx¼xi
c ;y¼yi

c
6¼ 0; i ¼ 1; . . . ;K, where W ¼ ðb1; b2Þ, joW=oðx; yÞj is the Jacobian. Then the exact value of

(4.23) is
XK

i¼1

aðxi
c; y

i
cÞ

koW=oðx; yÞjx¼xi
c;y¼yi

c
j :
Compared with one dimensional case, in two dimension an additional issue needs to be studied is how to
check the existence of a common zero point of the level set functions. As stated before, in one dimension to
check the existence of a zero point of the level set function is trivial. But this is not obvious in high
dimensions.

Let us consider a common zero point ðxc; ycÞ of the level set functions b1ðx; yÞ and b2ðx; yÞ. Since
joW=oðx; yÞjx¼xc;y¼yc

6¼ 0, the map C : ðx; yÞ ! ðb1ðx; yÞ; b2ðx; yÞÞ is one-to-one at the neighborhood of the com-
mon zero point. Assume the common zero point ðxc; ycÞ is in or near a cell
Cij : ½xi; xiþ1� 
 ½yj; yjþ1� ð4:24Þ
in ðx; yÞ-space, consider the set
eCij : fðp; qÞj9ðx; yÞ 2 Cij; s:t:ðp; qÞ ¼ Cðx; yÞg: ð4:25Þ

(4.25) typically is a set with curved boundary. To check that the cell Cij contains a common zero point of

the level set functions is equivalent to check that the set eCij contains the point ð0; 0Þ. However this is incon-
venient since eCij has curved boundary. This difficulty inspire us to consider the quadrilateral modified from eCij

which has flat boundary. Denote b1;k;l ¼ b1ðxk; ylÞ;b2;k;l ¼ b2ðxk; ylÞ for all k; l. Let the level set functions values
of the four vertexes of the cell Cij be: P 1 : ðb1;i;j; b2;i;jÞ, P 2 : ðb1;iþ1;j; b2;iþ1;jÞ, P 3 : ðb1;iþ1;jþ1; b2;iþ1;jþ1Þ,
P 4 : ðb1;i;jþ1; b2;i;jþ1Þ. We consider the quadrilateral
bCij : the quadrilateral enclosed by the line segments P 1P 2; P 2P 3; P 3P 4; P 4P 1: ð4:26Þ

Since C is the linear map plus high order terms near the common zero point ðxc; ycÞ, bCij is approximately a
parallelogram and is convex for fine enough mesh. If the common zero point ðxc; ycÞ is located in a cell Cij,
then for this cell and its neighboring cells, the corresponding bCij compose an irregular mesh covering the point
ð0; 0Þ for fine enough mesh. Thus our strategy is for each cell Cij to check whether the point ð0; 0Þ is contained
by the quadrilateral bCij rather than to check the set eCij. We will use the indication function as adopted in one
dimensional case. Namely if a quadrilateral bCij is checked to contain a common zero point, then its neighbor-
ing quadrilaterals are directly regarded to not contain a common zero point. This avoids to add the result of
one common zero point more than once if the zero point is located at the boundary of bCij.

One convenient way to check whether the point ð0; 0Þ is covered by a convex quadrilateral bCij is to compare
the position of ð0; 0Þ towards the oriented line segments P 1P 2



!
, P 2P 3


!

, P 3P 4


!

, P 4P 1


!

. If ð0; 0Þ is at the same side of
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the four oriented line segments, then it is enclosed by the four line segments, thus being covered by the quad-
rilateral. Algebraically, this can be checked by observing the following four determinants:
b1;i;j b1;iþ1;j

b2;i;j b2;iþ1;j

�����
�����; b1;iþ1;j b1;iþ1;jþ1

b2;iþ1;j b2;iþ1;jþ1

�����
�����; b1;iþ1;jþ1 b1;i;jþ1

b2;iþ1;jþ1 b2;i;jþ1

�����
�����; b1;i;jþ1 b1;i;j

b2;i;jþ1 b2;i;j

�����
�����: ð4:27Þ
If these four determinants have the same sign, including some of them being zero, then the point ð0; 0Þ is cov-
ered by the quadrilateral bCij, otherwise not.

If we have checked that the point ð0; 0Þ is contained by a quadrilateral bCij, implying the zero point ðxc; ycÞ
being in or near the cell Cij, then we can use interpolation to approximate aðxc;ycÞ

koW=oðx;yÞjx¼xc ;y¼yc
j. First we choose a

point among the four points ðxi; yjÞ, ðxiþ1; yjÞ, ðxiþ1; yjþ1Þ, ðxi; yjþ1Þ. From the viewpoint of numerical accuracy,
we choose the point denoted by ðxk; ylÞ which has the minimum value of b2

1;k;l þ b2
2;k;l. Then in the same spirit as

in the one dimensional case, we interpolate in the level set functions variables ðb1; b2Þ space instead of in the
integral variables ðx; yÞ space. Denote
Gij ¼
aðxi; yjÞ

koWD=oðx; yÞjx¼xi ;y¼yj
j ; for all i; j; ð4:28Þ
where oWD=oðx; yÞ is the difference approximation to the Jacobian matrix oW=oðx; yÞ, which can be achieved by
using the formula (4.22). Then to achieve second order accuracy, we can solve a third order linear algebraic
equations system, for example
1 b1;k;l b2;k;l

1 b1;kþ1;l b2;kþ1;l

1 b1;k;lþ1 b2;k;lþ1

0B@
1CA p0

p1

p2

0B@
1CA ¼ Gkl

Gkþ1;l

Gk;lþ1

0B@
1CA: ð4:29Þ
To achieve third order accuracy, we can solve a sixth order linear algebraic equations system, for example
1 b1;k;l b2;k;l b2
1;k;l b2

2;k;l b1;k;lb2;k;l

1 b1;kþ1;l b2;kþ1;l b2
1;kþ1;l b2

2;kþ1;l b1;kþ1;lb2;kþ1;l

1 b1;k;lþ1 b2;k;lþ1 b2
1;k;lþ1 b2

2;k;lþ1 b1;k;lþ1b2;k;lþ1

1 b1;k�1;l b2;k�1;l b2
1;k�1;l b2

2;k�1;l b1;k�1;lb2;k�1;l

1 b1;k;l�1 b2;k;l�1 b2
1;k;l�1 b2

2;k;l�1 b1;k;l�1b2;k;l�1

1 b1;kþ1;lþ1 b2;kþ1;lþ1 b2
1;kþ1;lþ1 b2

2;kþ1;lþ1 b1;kþ1;lþ1b2;kþ1;lþ1

0BBBBBBBBBB@

1CCCCCCCCCCA

p0

p1

p2

p3

p4

p5

0BBBBBBBB@

1CCCCCCCCA
¼

Gkl

Gkþ1;l

Gk;lþ1

Gk�1;l

Gk;l�1

Gkþ1;lþ1

0BBBBBBBB@

1CCCCCCCCA
: ð4:30Þ
To achieve fourth order accuracy, we solve a tenth order linear algebraic equations system which can be
constructed following the same principle as (4.29) and (4.30).

We can check that the matrixes in (4.29) and (4.30) are nonsingular for fine enough mesh. Denote
B1;x ¼
ob1

ox
jx¼xc;y¼yc

; B1;y ¼
ob1

oy
jx¼xc;y¼yc

; B2;x ¼
ob2

ox
jx¼xc;y¼yc

; B2;y ¼
ob2

oy
jx¼xc ;y¼yc

:

Denote the matrix in (4.29) to be M1, then
jM1j ¼
1 B1;xðxk � xcÞ þ B1;yðyl � ycÞ B2;xðxk � xcÞ þ B2;yðyl � ycÞ
1 B1;xðxkþ1 � xcÞ þ B1;yðyl � ycÞ B2;xðxkþ1 � xcÞ þ B2;yðyl � ycÞ
1 B1;xðxk � xcÞ þ B1;yðylþ1 � ycÞ B2;xðxk � xcÞ þ B2;yðylþ1 � ycÞ

�������
�������þH:O:;
where H.O. represents high order terms. So
jM1j ¼
1 B1;xxk þ B1;yyl B2;xxk þ B2;yyl

1 B1;xxkþ1 þ B1;yyl B2;xxkþ1 þ B2;yyl

1 B1;xxk þ B1;yylþ1 B2;xxk þ B2;yylþ1

�������
�������þH:O: ¼

1 xk yl

1 xkþ1 yl

1 xk ylþ1

�������
�������

1 0 0

0 B1;x B2;x

0 B1;y B2;y

�������
�������þH:O:

ð4:31Þ
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The first matrix in (4.31) can be regarded as the matrix in ðx; yÞ space corresponding to M1. Since the second
determinant in (4.31) is joW=oðx; yÞjx¼xc;y¼yc

6¼ 0, (4.31) implies that M1 is nonsingular for fine enough mesh if
its corresponding matrix in ðx; yÞ space is nonsingular. This is clearly valid, thus M1 is nonsingular for fine
enough mesh.

Denote the matrix in (4.30) to be M2, denote
B1
ij ¼ B1;xxi þ B1;yyj; B2

ij ¼ B2;xxi þ B2;yyj; for all i; j:
Then
jM2j ¼

1 B1
kl B2

kl ðB1
klÞ

2 ðB2
klÞ

2 B1
klB

2
kl

1 B1
kþ1;l B2

kþ1;l ðB1
kþ1;lÞ

2 ðB2
kþ1;lÞ

2 B1
kþ1;lB

2
kþ1;l

1 B1
k;lþ1 B2

k;lþ1 ðB1
k;lþ1Þ

2 ðB2
k;lþ1Þ

2 B1
k;lþ1B2

k;lþ1

1 B1
k�1;l B2

k�1;l ðB1
k�1;lÞ

2 ðB2
k�1;lÞ

2 B1
k�1;lB

2
k�1;l

1 B1
k;l�1 B2

k;l�1 ðB1
k;l�1Þ

2 ðB2
k;l�1Þ

2 B1
k;l�1B2

k;l�1

1 B1
kþ1;lþ1 B2

kþ1;lþ1 ðB1
kþ1;lþ1Þ

2 ðB2
kþ1;lþ1Þ

2 B1
kþ1;lþ1B2

kþ1;lþ1

�����������������

�����������������
þH:O: ¼ j eM 2jjeBj þH:O:;

ð4:32Þ
where
j eM 2j ¼

1 xk yl ðxkÞ2 ðylÞ
2 xkyl

1 xkþ1 yl ðxkþ1Þ2 ðylÞ
2 xkþ1yl

1 xk ylþ1 ðxkÞ2 ðylþ1Þ
2 xkylþ1

1 xk�1 yl ðxk�1Þ2 ðylÞ
2 xk�1yl

1 xk yl�1 ðxkÞ2 ðyl�1Þ
2 xkyl�1

1 xkþ1 ylþ1 ðxkþ1Þ2 ðylþ1Þ
2 xkþ1ylþ1

���������������

���������������
; ð4:33Þ

jeBj ¼
1 0 0 0 0 0

0 B1;x B2;x 0 0 0

0 B1;y B2;y 0 0 0

0 0 0 ðB1;xÞ2 ðB2;xÞ2 B1;xB2;x

0 0 0 ðB1;yÞ2 ðB2;yÞ2 B1;yB2;y

0 0 0 2B1;xB1;y 2B2;xB2;y B1;xB2;y þ B2;xB1;y

���������������

���������������
: ð4:34Þ
The matrix in (4.33) is the corresponding matrix to M2 in ðx; yÞ space. Since jeBj in (4.34) equals
ðjoW=oðx; yÞjx¼xc;y¼yc

Þ4 6¼ 0, (4.32) again implies that M2 is nonsingular for fine enough mesh if its correspond-
ing matrix in ðx; yÞ space is nonsingular. One can check that eM 2 is nonsingular, thus M2 is nonsingular for fine
enough mesh.

Similarly, one can check that for the tenth order matrix in achieving fourth order accuracy, it also
holds that the matrix is nonsingular for fine enough mesh if its corresponding matrix in ðx; yÞ space is
nonsingular. To satisfy this, one can choose the ten indices in the matrix for example to be the eight indi-
ces among fði; jÞji ¼ k � 1; k; k þ 1; j ¼ l� 1; l; lþ 1g except ðk � 1; l� 1Þ, plus two indices
ðk þ 2; lÞ; ðk þ 2; lþ 2Þ.

Thus we show that our second to fourth order accurate methods are all ensured to be implementable. After
solving the linear algebraic system, which is (4.29) for second order method, (4.30) for third order method, and
a tenth order system for fourth order method, the resulting p0 is the approximation to aðxc ;ycÞ

koW=oðx;yÞjx¼xc ;y¼yc
j.

After the above discussions, our two dimensional algorithm can be described as follows
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Algorithm II

� set sij ¼ 0 for all indices.
� for each cell Cij : ½xi; xiþ1� 
 ½yj; yjþ1�, check whether sij þ siþ1;j þ siþ1;jþ1 þ si;jþ1 ¼ 0.

– if it is true, check whether the quadrilateral bCij contains the point ð0; 0Þ.

* if it is true, then
Æ use difference approximation to evaluate the quantities (4.28) at grid points. These values are
used as right hand sides of the linear algebraic equations to be solved.

Æ solve a linear algebraic equations system according to the expected order accuracy, and get the
value of p0.

Æ set sij ¼ siþ1;j ¼ siþ1;jþ1 ¼ si;jþ1 ¼ 1.

� add up the values of p0 of all the quadrilaterals bCij containing the point ð0; 0Þ.
4.3. Three dimension

In three dimensional case the delta function integrals (1.1) take the form
Z b

a

Z d

c

Z f

e
aðxÞdðb1ðxÞÞdðb2ðxÞÞdðb3ðxÞÞdx; x 2 R3: ð4:35Þ
Assume the common zero points of b1ðx; y; zÞ, b2ðx; y; zÞ and b3ðx; y; zÞ are xi
c; y

i
c; z

i
c

� �
; i ¼ 1; . . . ;K, and

joW=oðx; y; zÞjx¼xi
c ;y¼yi

c;z¼zi
c
6¼ 0; i ¼ 1; . . . ;K, where W ¼ ðb1; b2; b3Þ, joW=oðx; y; zÞj is the Jacobian. Then the

exact value of (4.35) is
XK

i¼1

aðxi
c; y

i
c; z

i
cÞ

koW=oðx; y; zÞjx¼xi
c;y¼yi

c;z¼zi
c
j :
Denote b1;i;j;k ¼ b1ðxi; yj; zkÞ; b2;i;j;k ¼ b2ðxi; yj; zkÞ; b3;i;j;k ¼ b3ðxi; yj; zkÞ; P i;j;k ¼ ðb1;i;j;k; b2;i;j;k; b3;i;j;kÞ for all
i; j; k. Let the level set functions values of the eight vertexes of the cell
Cijk : ½xi; xiþ1� 
 ½yj; yjþ1� 
 ½zk; zkþ1� ð4:36Þ
be: P 1 : P i;j;k, P 2 : P iþ1;j;k, P 3 : P iþ1;jþ1;k, P 4 : P i;jþ1;k, P 5 : P i;j;kþ1, P 6 : P iþ1;j;kþ1, P 7 : P iþ1;jþ1;kþ1, P 8 : P i;jþ1;kþ1. In the
same spirit as in the two dimensional case, we consider the dodecahedron
bCijk : the dodecahedron enclosed by the faces

P 1P 2P 4; P 1P 5P 2; P 1P 4P 5; P 2P 5P 6; P 2P 6P 3; P 5P 8P 6;

P 2P 3P 4; P 3P 8P 4; P 4P 8P 5; P 3P 6P 7; P 6P 8P 7; P 3P 7P 8: ð4:37Þ
If a common zero point ðxc; yc; zcÞ is located in a cell Cijk, then for this cell and its neighboring cells, the
corresponding bCijk compose an irregular mesh covering the point ð0; 0; 0Þ for fine enough mesh. To design
a convenient way to check a common zero point ðxc; yc; zcÞ, observe that the dodecahedron bCijk is covered
by the union of the following two hexahedrons
bC1

ijk : the hexahedron enclosed by the planes

P 1P 2P 4; P 1P 5P 2; P 1P 4P 5; P 3P 6P 7; P 6P 8P 7; P 3P 7P 8; ð4:38ÞbC2
ijk : the hexahedron enclosed by the planes

P 2P 5P 6; P 2P 6P 3; P 5P 8P 6; P 2P 3P 4; P 3P 8P 4; P 4P 8P 5: ð4:39Þ
For a cell near the zero point ðxc; yc; zcÞ, the two hexahedrons bC1
ijk and bC2

ijk are convex for fine enough mesh.
Moreover, bC1

ijk [ bC2
ijk can only be slightly larger than bCijk in the sense that for two dodecahedrons bCijk andbCi0;j0 ;k0 which are not adjacent, then their corresponding bC1

ijk [ bC2
ijk and bC1

i0 ;j0;k0 [ bC2
i0;j0 ;k0 also do not contact

for fine enough mesh. Therefore for a cell Cijk it is more convenient to check the existence of the point
ð0; 0; 0Þ in the set bC1

ijk [ bC2
ijk, for which we check the existence of the point ð0; 0; 0Þ in the two hexahedrons
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bC1
ijk and bC2

ijk, respectively. To check whether the point ð0; 0; 0Þ is covered by a convex hexahedron, we take the
similar strategy as for a convex quadrilateral in two dimensional case. We compare the position of ð0; 0; 0Þ
towards the oriented planes of the six faces of the hexahedron. If ð0; 0; 0Þ is at the same side of the six oriented
planes, then it is enclosed by the six faces, thus being covered by the hexahedron. Algebraically, for bC1

ijk this
can be checked by observing the following six determinants:
b1;i;j;k b1;iþ1;j;k b1;i;jþ1;k

b2;i;j;k b2;iþ1;j;k b2;i;jþ1;k

b3;i;j;k b3;iþ1;j;k b3;i;jþ1;k

�������
�������;

b1;i;j;k b1;i;j;kþ1 b1;iþ1;j;k

b2;i;j;k b2;i;j;kþ1 b2;iþ1;j;k

b3;i;j;k b3;i;j;kþ1 b3;iþ1;j;k

�������
�������;

b1;i;j;k b1;i;jþ1;k b1;i;j;kþ1

b2;i;j;k b2;i;jþ1;k b2;i;j;kþ1

b3;i;j;k b3;i;jþ1;k b3;i;j;kþ1

�������
�������;

b1;iþ1;jþ1;k b1;iþ1;j;kþ1 b1;iþ1;jþ1;kþ1

b2;iþ1;jþ1;k b2;iþ1;j;kþ1 b2;iþ1;jþ1;kþ1

b3;iþ1;jþ1;k b3;iþ1;j;kþ1 b3;iþ1;jþ1;kþ1

�������
�������;

b1;iþ1;j;kþ1 b1;i;jþ1;kþ1 b1;iþ1;jþ1;kþ1

b2;iþ1;j;kþ1 b2;i;jþ1;kþ1 b2;iþ1;jþ1;kþ1

b3;iþ1;j;kþ1 b3;i;jþ1;kþ1 b3;iþ1;jþ1;kþ1

�������
�������;

b1;iþ1;jþ1;k b1;iþ1;jþ1;kþ1 b1;i;jþ1;kþ1

b2;iþ1;jþ1;k b2;iþ1;jþ1;kþ1 b2;i;jþ1;kþ1

b3;iþ1;jþ1;k b3;iþ1;jþ1;kþ1 b3;i;jþ1;kþ1

�������
�������:

ð4:40Þ
If these six determinants have the same sign, including some of them being zero, then the point ð0; 0; 0Þ is cov-
ered by the hexahedron bC1

ijk, otherwise not. Similarly, to check the existence of the point ð0; 0; 0Þ in bC2
ijk we

compare the signs of the following six determinants:
b1;iþ1;j;k b1;i;j;kþ1 b1;iþ1;j;kþ1

b2;iþ1;j;k b2;i;j;kþ1 b2;iþ1;j;kþ1

b3;iþ1;j;k b3;i;j;kþ1 b3;iþ1;j;kþ1

�������
�������;

b1;iþ1;j;k b1;iþ1;j;kþ1 b1;iþ1;jþ1;k

b2;iþ1;j;k b2;iþ1;j;kþ1 b2;iþ1;jþ1;k

b3;iþ1;j;k b3;iþ1;j;kþ1 b3;iþ1;jþ1;k

�������
�������;

b1;i;j;kþ1 b1;i;jþ1;kþ1 b1;iþ1;j;kþ1

b2;i;j;kþ1 b2;i;jþ1;kþ1 b2;iþ1;j;kþ1

b3;i;j;kþ1 b3;i;jþ1;kþ1 b3;iþ1;j;kþ1

�������
�������;

b1;iþ1;j;k b1;iþ1;jþ1;k b1;i;jþ1;k

b2;iþ1;j;k b2;iþ1;jþ1;k b2;i;jþ1;k

b3;iþ1;j;k b3;iþ1;jþ1;k b3;i;jþ1;k

�������
�������;

b1;iþ1;jþ1;k b1;i;jþ1;kþ1 b1;i;jþ1;k

b2;iþ1;jþ1;k b2;i;jþ1;kþ1 b2;i;jþ1;k

b3;iþ1;jþ1;k b3;i;jþ1;kþ1 b3;i;jþ1;k

�������
�������;

b1;i;jþ1;k b1;i;jþ1;kþ1 b1;i;j;kþ1

b2;i;jþ1;k b2;i;jþ1;kþ1 b2;i;j;kþ1

b3;i;jþ1;k b3;i;jþ1;kþ1 b3;i;j;kþ1

�������
�������:

ð4:41Þ
By this way we can check the existence of the point ð0; 0; 0Þ in bC1
ijk [ bC2

ijk. We introduce the indication func-
tion as adopted in one and two dimensional cases. Namely if a cell Cijk whose corresponding bC1

ijk [ bC2
ijk is

checked to contain the point ð0; 0; 0Þ, then we do not check its neighboring cells. Thus the result of one com-
mon zero point will not be added more than once.

If the point ð0; 0; 0Þ is checked to be contained in a bC1
ijk [ bC2

ijk, implying the zero point ðxc; yc; zcÞ being in or

near the cell Cijk, then we can use interpolation to approximate aðxc;yc;zcÞ
koW=oðx;y;zÞjx¼xc ;y¼yc ;z¼zc j

. As in the two dimensional

case, we first choose a point denoted by ðxl; ym; znÞ among the eight points ðxi; yj; zkÞ; ðxiþ1; yj; zkÞ; ðxiþ1; yjþ1; zkÞ;
ðxi; yjþ1; zkÞ; ðxi; yj; zkþ1Þ; ðxiþ1; yj; zkþ1Þ; ðxiþ1; yjþ1; zkþ1Þ; ðxi; yjþ1; zkþ1Þ which has the minimum value of
b2

1;l;m;n þ b2
2;l;m;n þ b2

3;l;m;n. Denote
Hijk ¼
aðxi; yj; zkÞ

koWD=oðx; y; zÞjx¼xi;y¼yjz¼zk
j ; for all i; j; k; ð4:42Þ
where oWD=oðx; y; zÞ is the difference approximation to the Jacobian matrix oW=oðx; y; zÞ, which can be
achieved by using the formula (4.22). Then to achieve second order accuracy, we can solve a fourth order lin-
ear algebraic equations system, for example
1 b1;l;m;n b2;l;m;n b3;l;m;n

1 b1;lþ1;m;n b2;lþ1;m;n b3;lþ1;m;n

1 b1;l;mþ1;n b2;l;mþ1;n b3;l;mþ1;n

1 b1;l;m;nþ1 b2;l;m;nþ1 b3;l;m;nþ1

0BBB@
1CCCA

p0

p1

p2

p3

0BBB@
1CCCA ¼

H l;m;n

H lþ1;m;n

H l;mþ1;n

H l;m;nþ1

0BBB@
1CCCA: ð4:43Þ
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To achieve third and fourth order accuracy, we solve a tenth and a twentieth order linear algebraic equa-
tions system, respectively which can be constructed following the same principle as (4.43).

Similar to two dimensional case, we can check that the matrix in (4.43) is nonsingular for fine enough mesh.
Denote
Bp;x ¼
obp

ox
jx¼xc;y¼yc;z¼zc

; Bp;y ¼
obp

oy
jx¼xc;y¼yc;z¼zc

; Bp;z ¼
obp

oz
jx¼xc;y¼yc;z¼zc

;

Bp
ijk ¼ Bp;xxi þ Bp;yyj þ Bp;zzk for all i; j; k
for p ¼ 1; 2; 3.
Denote the matrix in (4.43) to be M3, then
jM3j ¼

1 B1
l;m;n B2

l;m;n B3
l;m;n

1 B1
lþ1;m;n B2

lþ1;m;n B3
lþ1;m;n

1 B1
l;mþ1;n B2

l;mþ1;n B3
l;mþ1;n

1 B1
l;m;nþ1 B2

l;m;nþ1 B3
l;m;nþ1

����������

����������
þH:O: ¼

1 xl ym zn

1 xlþ1 ym zn

1 xl ymþ1 zn

1 xl ym znþ1

���������

���������
1 0 0 0

0 B1;x B2;x B3;x

0 B1;y B2;y B3;y

0 B1;z B2;z B3;z

���������

���������þH:O:

ð4:44Þ
The first matrix in (4.44) can be regarded as the matrix in ðx; y; zÞ space corresponding to M3. The second
determinant in (4.44) is joW=oðx; y; zÞjx¼xc;y¼yc;z¼zc

6¼ 0. Similar to two dimensional case, we again have that M3

is nonsingular for fine enough mesh if its corresponding matrix in ðx; y; zÞ space is nonsingular, which is clearly
valid. Thus M3 is nonsingular for fine enough mesh.

Similarly, one can check that for the tenth and the twentieth order matrixes in achieving third and fourth
order accuracy, the matrix is nonsingular for fine enough mesh if its corresponding matrix in ðx; y; zÞ space is
nonsingular, respectively. To satisfy this, one can choose the ten indices in the tenth order matrix for example
to be ðlþ i;mþ j; nþ kÞ for ði; j; kÞ being
fð0; 0; 0Þ; ð1; 0; 0Þ; ð�1; 0; 0Þ; ð0; 1; 0Þ; ð0;�1; 0Þ; ð0; 0; 1Þ; ð0; 0;�1Þ; ð1; 1; 0Þ; ð1; 0; 1Þ; ð0; 1; 1Þg: ð4:45Þ
The twenty indices in the twentieth order matrix can be chosen for example to be ðlþ i;mþ j; nþ kÞ for
ði; j; kÞ being
fð0; 0; 0Þ; ð1; 0; 0Þ; ð�1; 0; 0Þ; ð0; 1; 0Þ; ð0;�1; 0Þ; ð0; 0; 1Þ; ð0; 0;�1Þ; ð1; 1; 0Þ; ð1; 0; 1Þ; ð0; 1; 1Þ; ð�1;�1; 0Þ;
ð�1; 0;�1Þ; ð0;�1;�1Þ; ð1;�1; 0Þ; ð1; 0;�1Þ; ð0; 1;�1Þ; ð1; 1; 1Þ; ð2; 0; 0Þ; ð0; 2; 0Þ; ð0; 0; 2Þg: ð4:46Þ
Thus our second to fourth order accurate methods are all ensured to be implementable. After solving the
linear algebraic system, the resulting p0 is the approximation to aðxc;yc;zcÞ

koW=oðx;y;zÞjx¼xc ;y¼yc ;z¼zc j
.

After the above discussions, our three dimensional algorithm can be described as follows

Algorithm III

� set si;j;k ¼ 0 for all indices.
� for each cell Cijk : ½xi; xiþ1� 
 ½yj; yjþ1� 
 ½zk; zkþ1�, check whether si;j;k þ siþ1;j;k þ siþ1;jþ1;k þ si;jþ1;k þ si;j;kþ1þ

siþ1;j;kþ1 þ siþ1;jþ1;kþ1 þ si;jþ1;kþ1 ¼ 0.
– if it is true, check whether the union of hexahedrons bC1

ijk [ bC2
ijk contains the point ð0; 0; 0Þ.
* if it is true, then

Æ use difference approximation to evaluate the quantities (4.42) at grid points. These values are

used as right hand sides of the linear algebraic equations to be solved.
Æ solve a linear algebraic equations system according to the expected order accuracy, and get the

value of p0.
Æ set si;j;k ¼ siþ1;j;k ¼ siþ1;jþ1;k ¼ si;jþ1;k ¼ si;j;kþ1 ¼ siþ1;j;kþ1 ¼ siþ1;jþ1;kþ1 ¼ si;jþ1;kþ1 ¼ 1.
� add up the values of p0 of all the bC1
ijk [ bC2

ijk containing the point ð0; 0; 0Þ.
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5. Numerical examples

In this Section we give numerical examples in one to three dimensions respectively to show the efficiency
and accuracy of our methods proposed in this paper.

Example 5.1 Consider the numerical computation of the one dimensional delta function integral (4.19). We
choose aðxÞ ¼ logðxþ eÞ; bðxÞ ¼ e

ffiffi
2
p

x � 1. We test a number of mesh sizes. For each mesh size, we select 100
uniform meshes via random shifts. We show the largest relative numerical errors of our methods among using
these 100 meshes for each mesh size.

Table 5.1 lists the results of our second to fourth order methods. The last column in the Table presents the
estimated convergence rates. These results clearly show that our numerical methods achieve the expected
numerical accuracy.

Example 5.2 Consider the numerical computation of the two dimensional delta function integral (4.23). We
choose aðx; yÞ ¼ cosðxþ yÞ; b1ðx; yÞ ¼ e5xþy � 1; b2ðx; yÞ ¼ exþ2

5y � 1. We test a number of mesh sizes. For each
mesh size, we select 100 uniform meshes via random shifts in two axis directions. We show the largest relative
numerical errors of our methods among using these 100 meshes for each mesh size.

Table 5.2 lists the results of our second to fourth order methods. The last column in the Table presents the
estimated convergence rates. These results show that our numerical methods achieve the expected numerical
accuracy.

Example 5.3 Consider the numerical computation of the three dimensional delta function integral (4.35). We
choose aðx; y; zÞ ¼ cosðxþ y þ zÞ; b1ðx; y; zÞ ¼ e

1ffiffi
3
p xþ 1ffiffi

3
p yþ 1ffiffi

3
p z � 1; b2ðx; y; zÞ ¼ e

1ffiffi
2
p xþ 1ffiffi

2
p z � 1; b3ðx; y; zÞ ¼ e

2
3xþ2

3yþ1
3z � 1.

We test a number of mesh sizes. For each mesh size, we select 50 uniform meshes via random shifts in three
axis directions. We show the largest relative numerical errors of our methods among using these 50 meshes for
each mesh size.

Table 5.3 lists the results of our second to fourth order methods. The last column in the Table presents the
estimated convergence rates. These results show that our numerical methods achieve the expected numerical
accuracy.
Table 5.1
Example 5.1, relative errors of the one dimensional methods

Mesh size 0.1 0.05 0.025 0.0125 0.00625 Re

Second order method 3.21E�3 8.27E�4 2.08E�4 5.19E�5 1.29E�5 1.99
Third order method 5.06E�4 6.22E�5 7.72E�6 9.60E�7 1.20E�7 3.01
Fourth order method 6.34E�5 3.99E�6 2.50E�7 1.56E�8 9.76E�10 4.00

Table 5.2
Example 5.2, relative errors of the two dimensional methods

Mesh size 0.1 0.05 0.025 0.0125 0.00625 Re

Second order method 1.00E�1 3.01E�2 6.96E�3 2.16E�3 5.80E�4 1.87
Third order method 1.51E�1 1.75E�2 2.18E�3 2.54E�4 3.47E�5 3.03
Fourth order method 4.04E�1 6.02E�3 4.96E�4 2.52E�5 1.16E�6 4.47

Table 5.3
Example 5.3, relative errors of the three dimensional methods

Mesh size 0.1 0.05 0.025 0.0125 0.00625 Re

Second order method 8.03E�3 2.36E�3 6.21E�4 1.48E�4 3.43E�5 1.97
Third order method 5.13E�3 6.18E�4 1.00E�4 1.24E�5 1.56E�6 2.90
Fourth order method 4.11E�4 3.24E�5 2.46E�6 1.26E�7 3.95E�9 4.13
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6. Conclusion

In this paper we studied high order numerical methods to a type of delta function integrals in one to three
dimensions. Such delta function integrals arise from recent efficient level set methods for computing the mul-
tivalued solutions in the semiclassical limit of the linear Schrödinger equation and the high frequency limit of
the linear wave equation [13,14].

We show that the numerical quadratures to the two dimensional delta function integrals, which are
designed based on very natural idea, suffer from nonconvergence with usual discrete delta functions and sup-
port size formulas. We then proceed to design efficient numerical methods to the delta function integrals in one
to three dimensions based on interpolation approach. In such an approach, one needs to check the existence of
the common zero points of the level set functions, which is avoided in the quadrature approach. Such an issue
indeed is nontrivial in high dimensions. In this paper we give convenient strategy to check the common zero
points of the level set functions. After the check of a common zero point, the usual way to perform interpo-
lation needs to approximate the common zero point position, which requires solving nonlinear algebraic equa-
tions system if high order accuracy is expected. We adapt the usual way by changing the interpolation space.
Our approach does not need to explicitly determine the common zero points positions and avoids solving non-
linear algebraic equations system in order to achieve high order accuracy. In this paper we have designed sec-
ond to fourth order methods. Numerical examples are presented which verify that our methods proposed in
this paper are efficient and achieve the expected accuracy.
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